logo

Strukturen och principen i hjärtat

Hjärtat är ett muskelorgan hos människor och djur som pumpar blod genom blodkärlen.

Hjärtets funktioner - varför behöver vi ett hjärta?

Vårt blod ger hela kroppen syre och näringsämnen. Dessutom har den också en rengöringsfunktion som hjälper till att avlägsna metaboliskt avfall.

Hjärtans funktion är att pumpa blod genom blodkärlen.

Hur mycket blod gör en persons hjärtpump?

Människans hjärta pumpar cirka 7 000 till 10 000 liter blod på en dag. Detta är cirka 3 miljoner liter per år. Det visar sig upp till 200 miljoner liter under en livstid!

Mängden pumpat blod inom en minut beror på den aktuella fysiska och känslomässiga belastningen - desto större belastning desto mer blod behöver kroppen. Så hjärtat kan passera genom sig själv från 5 till 30 liter på en minut.

Cirkulationssystemet består av cirka 65 tusen fartyg, deras totala längd är cirka 100 tusen kilometer! Ja, vi är inte förseglade.

Cirkulationssystem

Cirkulationssystem (animering)

Det mänskliga kardiovaskulära systemet består av två cirklar av blodcirkulation. Med varje hjärtslag rör sig blod i båda cirklarna på en gång.

Cirkulationssystem

  1. Deoxifierat blod från överlägsen och underlägsen vena cava går in i högra atrium och sedan in i högra ventrikeln.
  2. Från höger kammare trycks blodet in i lungstammen. Lungartärerna drar blod direkt i lungorna (före lungkapillärerna), där det tar emot syre och släpper ut koldioxid.
  3. Efter att ha fått tillräckligt med syre återvänder blodet till hjärtatets vänstra atrium genom lungorna.

Stor cirkel av blodcirkulationen

  1. Från vänstra atrium flytta blod till vänster ventrikel, varifrån det ytterligare pumpas ut genom aortan i systemcirkulationen.
  2. Efter att ha gått en svår väg, kommer blod genom de ihåliga venerna åter i hjärtatets atrium.

Normalt är den mängd blod som utstötas från hjärtkammarens hjärtkärl med varje sammandragning densamma. Således strömmar en lika stor mängd blod samtidigt i de stora och små cirklarna.

Vad är skillnaden mellan ådror och artärer?

  • År är utformade för att transportera blod till hjärtat, och artärernas uppgift är att ge blod i motsatt riktning.
  • I ådrorna är blodtrycket lägre än i artärerna. I enlighet med detta kännetecknas väggarnas artärer av större elasticitet och densitet.
  • Arterier mättar den "fräscha" vävnaden, och venerna tar "slöseri" blodet.
  • Vid kärlskada kan arteriell eller venös blödning särskiljas med blodets intensitet och färg. Arteriell - stark, pulserande, slår "fontän", blodets färg är ljus. Venös blödning med konstant intensitet (kontinuerligt flöde), blodets färg är mörk.

Hjärtans anatomiska struktur

Vikten av en persons hjärta är bara cirka 300 gram (i genomsnitt 250g för kvinnor och 330g för män). Trots den relativt låga vikt är detta utan tvivel huvudmuskeln i människokroppen och grunden för dess vitala aktivitet. Hjärtans storlek är faktiskt ungefär lika med näven hos en person. Idrottare kan ha ett hjärta som är en och en halv gånger större än en vanlig person.

Hjärtat är beläget i mitten av bröstet i nivå med 5-8 ryggkotor.

Normalt ligger den nedre delen av hjärtat mestadels i vänstra hälften av bröstet. Det finns en variant av medfödd patologi där alla organ speglas. Det kallas införlivande av de inre organen. Lungen, bredvid vilken hjärtat ligger (normalt vänster), har en mindre storlek i förhållande till den andra hälften.

Hjärtans baksida ligger nära ryggraden, och framsidan är säkert skyddad av sternum och revbenen.

Människans hjärta består av fyra oberoende hålrum (kamrar) dividerat med partitioner:

  • två övre - vänster och höger atria;
  • och två nedre vänster och höger ventrikel.

Höger sida av hjärtat innehåller rätt atrium och ventrikel. Den vänstra halvan av hjärtat är representerat av respektive vänster ventrikel och atrium.

De nedre och övre ihåliga venerna går in i det högra atriumet och lungvenerna kommer in i vänstra atriumet. Lungartärerna (även kallad pulmonell stammen) utgång från höger kammare. Från vänster ventrikel stiger den stigande aortan.

Hjärtväggsstruktur

Hjärtväggsstruktur

Hjärtat har skydd mot överbeläggning och andra organ, som kallas perikardiet eller perikardväskan (ett slags kuvert där orgeln är innesluten). Det har två lager: den yttre täta fasta bindväven, kallad hjärtfibrerna i perikardiet och det inre (pericardial serous).

Detta följs av ett tjockt muskelskikt - myokard och endokardium (hjärtbundet inre bindemedel i hjärtat).

Således består själva hjärtat av tre skikt: epikardiet, myokardiet, endokardiet. Det är sammandragningen av myokardiet som pumpar blod genom kroppens kärl.

Vänster ventrikels väggar är ungefär tre gånger större än höger väggar! Detta faktum förklaras av det faktum att funktionen i vänstra kammaren består i att trycka blod in i systemcirkulationen, där reaktionen och trycket är mycket högre än i de små.

Hjärtventiler

Hjärtventil

Speciella hjärtventiler gör det möjligt att ständigt bibehålla blodflödet i rätt riktning (ensriktad). Ventilerna öppnar och stänger en efter en, antingen genom att låta blod in eller genom att blockera sin väg. Intressant är att alla fyra ventilerna ligger längs samma plan.

En tricuspidventil är placerad mellan höger atrium och höger kammare. Den innehåller tre specialplattor, kapabla under sammandragning av högra hjärtkammaren för att ge skydd mot omvänd ström (uppblåsthet) av blod i atriumet.

På samma sätt fungerar mitralventilen, den ligger bara i vänster sida av hjärtat och är bikuspid i sin struktur.

Aortaklappen förhindrar utflödet av blod från aorta in i vänstra kammaren. Intressant, när vänster ventrikel kontraherar öppnar aortaklaven som ett resultat av blodtryck på det, så det rör sig in i aortan. Sedan, under diastolen (hjärtens avslappningsperiod) bidrar det omvända flödet av blod från artären till stängning av ventilerna.

Normalt har aorta ventilen tre broschyrer. Hjärtans vanligaste medfödda anomali är bicuspid aortaklaven. Denna patologi förekommer hos 2% av den humana befolkningen.

En pulmonell (lungventil) vid tiden för sammandragning av högra ventrikeln tillåter blod att strömma in i lungstammen, och under diastolen tillåter det inte att strömma i motsatt riktning. Består också av tre vingar.

Hjärtekärl och kranskärl

Människans hjärta behöver mat och syre, liksom alla andra organ. Fartyg som ger (närande) hjärtat med blod kallas koronär eller koronär. Dessa kärl avgrenas från basen av aortan.

Koronararterierna levererar hjärtat med blod, koronarvena avlägsnar deoxiderat blod. De artärer som är på ytan av hjärtat kallas epikardiala. Subendokardial kallas kransartärer som är dolda djupt i myokardiet.

Det mesta av blodutflödet från myokardiet sker genom tre hjärtår: stora, medelstora och små. Att forma den koronar sinusen, faller de in i det högra atriumet. Hjärnans främre och mindre vener levererar blod direkt till det högra atriumet.

Koronarartärer är indelade i två typer - höger och vänster. Den senare består av de främre interventrikulära och kuvertartärerna. En stor hjärngränna förgrenar sig i hjärtans bakre, mellersta och små vener.

Även helt friska människor har sina egna unika egenskaper i kranskärlcirkulationen. I själva verket kan fartygen se ut och placeras annorlunda än vad som visas på bilden.

Hur utvecklar hjärtat (form)?

För bildandet av alla kroppssystem kräver fostret sin egen blodcirkulation. Därför är hjärtat det första funktionella organet som uppstår i kroppen av ett mänskligt embryo, det förekommer ungefär i den tredje veckan av fosterutveckling.

Embryot i början är bara ett kluster av celler. Men under graviditeten blir de mer och mer, och nu är de anslutna och bildar sig i programmerade former. Först bildas två rör, som sedan slås samman i ett. Detta rör är vikat och rusar ner bildar en slinga - den primära hjärtslangen. Denna slinga är framför alla återstående celler i tillväxt och förlängs snabbt, då ligger den till höger (kanske till vänster, vilket betyder att hjärtat kommer att vara placerat i spegelform) i form av en ring.

Så vanligtvis den 22: e dagen efter befruktningen sker den första sammandragningen av hjärtat, och vid den 26: e dagen har fostret sin egen blodcirkulation. Ytterligare utveckling innefattar förekomsten av septa, bildandet av ventiler och ombyggnad av hjärtkamrarna. Fördelningsformen vid den femte veckan, och hjärtklaffarna bildas av den nionde veckan.

Intressant börjar hjärtat av fostret att slå med frekvensen hos en vanlig vuxen - 75-80 stycken per minut. Sedan, i början av den sjunde veckan, är pulsen ungefär 165-185 slag per minut, vilket är det maximala värdet följt av en avmattning. Nyföddens puls ligger inom intervallet 120-170 nedskärningar per minut.

Fysiologi - principen om det mänskliga hjärtat

Överväga i detalj hjärtans principer och mönster.

Hjärtcykel

När en vuxen är lugn, samlar hans hjärta omkring 70-80 cyklar per minut. En takt av pulsen är lika med en hjärtcykel. Med en sådan reduktionshastighet tar en cykel ca 0,8 sekunder. Vid vilken tid är atriell sammandragning 0,1 sekunder, ventrikler - 0,3 sekunder och avslappningsperiod - 0,4 sekunder.

Cyklens frekvens bestäms av hjärtfrekvensdrivrutinen (en del av hjärtmuskeln där impulser uppstår som reglerar hjärtfrekvensen).

Följande begrepp skiljer sig åt:

  • Systole (sammandragning) - nästan alltid innebär detta koncept en sammandragning av hjärtkärlens hjärtkärl, vilket leder till blodskott längs artärkanalen och maximering av trycket i artärerna.
  • Diastol (paus) - den period då hjärtmuskeln är i avslappningsstadiet. Vid denna tidpunkt är hjärtkamrarna fyllda med blod och trycket i artärerna minskar.

Så mäta blodtrycket registrerar alltid två indikatorer. Som ett exempel, ta siffrorna 110/70, vad menar de?

  • 110 är det övre numret (systoliskt tryck), det vill säga det är blodtrycket i artärerna vid hjärtslagets gång.
  • 70 är det lägre antalet (diastoliskt tryck), det vill säga det är blodtrycket i artärerna vid hjärtat avkoppling.

En enkel beskrivning av hjärtcykeln:

Hjärtcykel (animering)

På hjärtat avkoppling fylls atrierna och ventriklarna (genom öppna ventiler) med blod.

  • Inträder systol (sammandragning) av atrierna, som gör att du helt kan flytta blodet från atrierna till ventriklerna. Atriell sammandragning börjar vid platsen för tillflödet av venerna in i det, vilket garanterar primärkompressionen av deras mun och blodets oförmåga att flyta tillbaka i venerna.
  • Atrierna slappna av och ventilerna separerar atrierna från ventriklerna (tricuspid och mitral) nära. Uppträder ventrikulär systole.
  • Ventrikulär systole skjuter blod i aortan genom vänster ventrikel och in i lungartären genom högerkammaren.
  • Därefter kommer en paus (diastole). Cykeln upprepas.
  • För ett pulsslag finns det två hjärtslag (två systoler) - först reduceras atrierna, och sedan ventriklarna. Förutom ventrikulär systole finns atriell systole. Sammandragningen av atrierna har inget värde i hjärtens uppmätta arbete, eftersom i detta fall är avslappningstiden (diastol) tillräcklig för att fylla ventriklerna med blod. Men när hjärtat börjar slå mer ofta blir atriell systole avgörande - utan det skulle ventriklarna helt enkelt inte ha tid att fylla med blod.

    Blodtrycket genom artärerna utförs endast med kontraktion av ventriklarna, dessa push-sammandrag kallas pulser.

    Hjärtmuskler

    Unikheten hos hjärtmuskeln ligger i sin förmåga att rytmiska automatiska sammandragningar, alternerande med avslappning, som sker kontinuerligt under hela livet. Myokardiet (mittmuskulärskiktet i hjärtat) av atriärerna och ventriklarna är uppdelat vilket gör att de kan komma åt varandra separat.

    Kardiomyocyter - hjärtkärnans muskelceller med en speciell struktur som möjliggör särskilt koordinerad att överföra en våg av excitation. Så det finns två typer av kardiomyocyter:

    • Vanliga arbetare (99% av det totala antalet hjärtmuskelceller) är utformade för att ta emot en signal från en pacemaker genom att leda kardiomyocyter.
    • speciell ledande (1% av det totala antalet hjärtmuskulära celler) kardiomyocyter bildar ledningssystemet. I sin funktion liknar de neuroner.

    Liksom skelettmuskulaturen kan hjärtats muskel öka volymen och öka effektiviteten i sitt arbete. Hjärtvolymen hos uthållighetsutövare kan vara 40% större än för en vanlig person! Detta är en användbar hypertrofi i hjärtat, när den sträcker sig och kan pumpa mer blod i ett slag. Det finns en annan hypertrofi - kallad "sporthjärta" eller "tjurhjärta".

    Bottom line är att vissa idrottare ökar muskelmassan, och inte förmågan att sträcka sig och trycka igenom stora blodvolymer. Anledningen till detta är oansvarigt sammanställda träningsprogram. Absolut någon fysisk träning, särskilt styrka, bör byggas utifrån hjärtat. Annars orsakar överdriven fysisk ansträngning på ett oförberedt hjärta myokarddystrofi, vilket leder till tidig död.

    Hjärtledningssystem

    Hjärtans ledande system är en grupp av speciella formationer bestående av icke-standardiserade muskelfibrer (ledande kardiomyocyter), som fungerar som en mekanism för att säkerställa hjärtatavdelningarna på ett harmoniskt sätt.

    Pulsväg

    Detta system säkerställer hjärtautomatiken - exciteringen av impulser födda i kardiomyocyter utan yttre stimulans. I ett hälsosamt hjärta är huvudkällan av impulser sinusnoden (sinusnoden). Han leder och överlappar impulser från alla andra pacemakers. Men om någon sjukdom uppträder som leder till syndromets svaghet, tar andra delar av hjärtat över sin funktion. Så den atrioventrikulära noden (det automatiska centret i den andra ordningen) och bunten av His (tredje ordningens AC) kan aktiveras när sinusnoden är svag. Det finns fall då sekundära noder förbättrar sin egen automatism och vid normal drift av sinusnoden.

    Sinusnoden ligger i den högra atriumets övre ryggvägg i omedelbar närhet av den överlägsna vena cava-munen. Denna nod initierar pulser med en frekvens av cirka 80-100 gånger per minut.

    Atrioventrikulär nod (AV) ligger i den nedre delen av det högra atriumet i det atrioventrikulära septumet. Denna partition förhindrar spridningen av impulser direkt in i ventriklarna, förbi AV-noden. Om sinusnoden försvagas kommer atrioventrikuläret att ta över sin funktion och börja överföra impulser till hjärtmuskeln med en frekvens av 40-60 sammandragningar per minut.

    Då passerar den atrioventrikulära noden in i hans bunt (den atrioventrikulära bunten är indelad i två ben). Det högra benet rusar till höger kammaren. Vänsterbenet är uppdelat i två halvor.

    Situationen med det vänstra benet i Hans bunt är inte helt förstådd. Det antas att det vänstra benet på den främre filialen av fibrer rusar till den främre och laterala väggen i vänster ventrikel, och den bakre delen av fibrerna ger bakväggen till vänster ventrikel och de nedre delarna av sidoväggen.

    I fallet med sinusnodens svaghet och den atrioventrikulära blockaden kan hans bunt skapa pulser med en hastighet av 30-40 per minut.

    Ledningssystemet fördjupar och grenar sig sedan ut i mindre grenar, så småningom att de ändras till Purkinje-fibrer som tränger igenom hela myokardiet och fungerar som en överföringsmekanism för sammandragning av musklerna i ventriklarna. Purkinje-fibrer kan initiera pulser med en frekvens av 15-20 per minut.

    Exceptionellt välutbildade idrottare kan ha en normal hjärtfrekvens i vila upp till det lägsta inspelade antalet - endast 28 hjärtslag per minut! Men för den genomsnittliga personen, även om den leder en mycket aktiv livsstil, kan pulsfrekvensen under 50 slag per minut vara ett tecken på bradykardi. Om du har en så låg puls bör du undersökas av en kardiolog.

    Hjärtrytm

    Den nyfödda hjärtfrekvensen kan vara cirka 120 slag per minut. Med uppväxt stabiliserar puls hos en vanlig person i intervallet från 60 till 100 slag per minut. Välutbildade idrottare (vi talar om personer med välutbildade hjärt- och respiratoriska system) har en puls på 40 till 100 slag per minut.

    Hjärtans rytm styrs av nervsystemet - den sympatiska stärker sammandragningarna och den parasympatiska svagnar.

    Hjärtaktiviteten beror i viss utsträckning på kalcium- och kaliumjonens innehåll i blodet. Andra biologiskt aktiva substanser bidrar också till reglering av hjärtrytmen. Vårt hjärta kan börja slå mer ofta under påverkan av endorfiner och hormoner som utsöndras när du lyssnar på din favoritmusik eller kyss.

    Dessutom kan det endokrina systemet ha en signifikant effekt på hjärtritmen - och på frekvensen av sammandragningar och deras styrka. Till exempel orsakar frisättningen av adrenalin genom binjurarna en ökning av hjärtfrekvensen. Det motsatta hormonet är acetylkolin.

    Hjärtstoner

    En av de enklaste metoderna för att diagnostisera hjärtsjukdom lyssnar på bröstet med ett stetofonendoskop (auskultation).

    I ett hälsosamt hjärta hörs bara två hjärtsljud när de utför standard auscultation - de kallas S1 och S2:

    • S1 - ljudet hörs när atrioventrikulära (mitral- och tricuspid) ventiler stängs under systol (sammandragning) av ventriklarna.
    • S2 - ljudet som görs vid stängning av semilunar (aorta- och pulmonal) ventiler under diastol (avkoppling) av ventriklerna.

    Varje ljud består av två komponenter, men för det mänskliga örat slår de in i en på grund av den mycket lilla tiden mellan dem. Om det under normala auscultationsförhållanden blir ytterligare ljud, kan det här indikera en sjukdom i hjärt-kärlsystemet.

    Ibland kan ytterligare anomala ljud höras i hjärtat, som kallas hjärtljud. I allmänhet indikerar närvaron av buller hjärtats patologi. Till exempel kan buller få blod att återvända i motsatt riktning (upprepning) på grund av felaktig användning eller skada på en ventil. Dock är buller inte alltid ett symptom på sjukdomen. För att klargöra orsakerna till utseendet av ytterligare ljud i hjärtat är att göra en ekokardiografi (ultraljud i hjärtat).

    Hjärtsjukdom

    Inte överraskande växer antalet hjärt-kärlsjukdomar i världen. Hjärtat är ett komplext organ som faktiskt vilar (om det kan kallas vila) endast i intervallen mellan hjärtslag. Varje komplex och ständigt fungerande mekanism i sig kräver den mest försiktiga attityden och ständigt förebyggande.

    Tänk dig vad en monstrous börda faller på hjärtat, med tanke på vår livsstil och lågkvalitativ riklig mat. Intressant är dödsfallet från kardiovaskulära sjukdomar ganska högt i höginkomstländer.

    De enorma mängderna mat som konsumeras av befolkningen i rika länder och den oändliga strävan efter pengar, liksom de därmed sammanhängande påfrestningarna, förstör vårt hjärta. En annan orsak till spridningen av hjärt-kärlsjukdomar är hypodynami - en katastrofal låg fysisk aktivitet som förstör hela kroppen. Eller tvärtom, den illiterat passion för tunga fysiska övningar som ofta uppträder mot bakgrund av hjärtsjukdom, vars närvaro inte ens misstänker och lyckas dö rätt under "hälso" övningarna.

    Livsstil och hjärthälsa

    De viktigaste faktorerna som ökar risken för att utveckla hjärt-och kärlsjukdomar är:

    • Fetma.
    • Högt blodtryck.
    • Förhöjt blodkolesterol.
    • Hypodynami eller överdriven motion.
    • Riklig mat av låg kvalitet.
    • Deprimerat känslomässigt tillstånd och stress.

    Gör läsningen av den här stora artikeln en vändpunkt i ditt liv - ge upp dåliga vanor och ändra din livsstil.

    Hjärtans och blodkärlens arbete, hjärtfrekvensfasen (del 1).

    Hjärtat är kanske den viktigaste muskeln i människokroppen. Den kontraherar mer än 100 000 gånger om dagen och pumpar mer än 760 liter blod genom 60 000 blodkärl.

    Hjärtans arbete utförs cykliskt. Innan cykeln börjar, är hjärtat i ett avslappnat tillstånd, atrierna och ventriklarna är fyllda med blod. Inledningen av hjärtkontraktionscykeln är sammandragningen av atriumet, med det resultat att en ytterligare mängd blod träder in i ventriklerna. Då slappar atrierna och ventriklarna börjar kontraktera och skjuter blodet i urladdningskärlen (lungartären som bär blod till lungorna och aortan som bär blod till andra organ). Efter en period av blodutlopp slappnar ventriklerna av och en fas av allmän avslappning börjar. Hjärtkontraktfasen kallas systole, och avslappningsfasen kallas diastolhjärtat.

    Människans hjärta är 4-kammare, bestående av vänster atrium och vänster ventrikel och rätt atrium och högra ventrikel.

    Hjärtat är vår kropps motor. Detta är en muskelpump, vars huvudfunktion är kontraktil - är den kontinuerliga cirkulära rörelsen av blod i hela kroppen. Syre levereras från lungorna till vävnaderna och CO2, vilket är en av "slagg" till lungorna, där blodet återigen berikas med syre. Även med blod levereras näringsämnen till alla celler i kroppen, och andra "slagg" avlägsnas från dem, vilka avlägsnas från kroppen med hjälp av excretionsorgan (till exempel njurar).

    Hjärtans arbete, blodförsörjningssystemet.

    Fartyg som bär blod från hjärtat kallas arterier. De kärl genom vilka blod tränger in i hjärtat är venerna. Blod berikat med syre kallas arteriell, och där det finns lite syre, men mycket CO2-venöst.

    Den största artären - aorta, den går direkt från den vänstra kammaren hos hjärtat, de minsta blodkärlen - kapillärerna genom vars vägg det finns ett utbyte av blod berikat med syre och näringsämnen med kroppsvävnader. Blod mättad med koldioxid och metaboliska avfall samlas i venoler och vener nedan, frigörs från slaggen separation i organ, flyttas den tillbaka till hjärtat, som trycker den till lungorna för frisläppande av koldioxid och syreanrikning. Syresatt blod från lungorna genom lungvenerna inträder åter vänster atrium, vänster ventrikel pumpas in i aortan, och startar en ny cykel av den cirkulära rörelsen av blod.

    Hjärtat, hjärtmuskeln (myokardiet) levereras med syre och näringsämnen av de kranskärlskärl som lämnar aortan. Det är en hjärtmat som gör ett bra och viktigt jobb. Vid tidpunkten för diastol (avkoppling) fyller blodet i koronarkärlen, och vid tiden för hjärtstabiliteten lämnar blodet dem.

    Hjärtans cykel.

    Det finns stor och liten cirkulation av blodcirkulationen. Den lilla cirkeln börjar i högra kammaren och slutar i vänster atrium. Det tjänar till att närma hjärtat och berika blodet med syre. Det kallas också pulmonalt, eftersom blodet passerar genom lungorna.

    Den stora cirkeln (från vänster ventrikel till höger atrium) är ansvarig för blodtillförseln till hela kroppen utom lungor.

    Väggarna i blodkärlen är mycket elastiska och kan sträcka och avsmalna beroende på blodets tryck i dem. Muskelelementen i blodkärlväggen är alltid i en viss spänning, som kallas ton. Vaskulär tonus, liksom styrka och hjärtfrekvens, ger blod i blodet det tryck som behövs för att leverera blod till alla delar av kroppen. Denna ton, såväl som intensiteten av hjärtaktiviteten, som stöds av det autonoma nervsystemet (separerade nervsystemet reglerar de inre organen, endokrina och exokrina, blod- och lymfkärl). Beroende på behoven hos organismen parasympatiska divisionen, där den viktigaste mediatorn (mediator) är acetylkolin (neurotransmittor som utför neuromuskulär transmission, liksom den huvudsakliga signalsubstansen i det parasympatiska nervsystemet), vidgar det blodkärlen och saktar ner sammandragningar av hjärtat och sympatiska (medlare - noradrenalin, binjurehormonhormon och neurotransmittor) - tvärtom minskar blodkärlen och accelererar hjärtat.

    Normalt tryck är 120/80.

    Trycket i artärerna, vid tidpunkten för systolisk systoliskt tryck - 120 mm Hg.

    Tryck i artärerna under hjärtets diastol - diastoliskt blodtryck - 80 mm Hg.

    I medicin kallas tryck över 140/90 slag / min högt blodtryck. Tryck under 100/60 slag / min. kallad hypotension.

    Hjärtfrekvensen (puls) anses vara intervallet 60-90 slag per minut. i vila. Om antalet slag är mindre än 60, kallas det bradykardi, om mer än 90 slag, då är det takykardi. Inte regelbunden sammandragning av hjärtat kallas arytmi. Idrottare cykliska sport och älskare med upplevelsen av en puls i vila är 50 - 40 slag / min. Detta tyder på att hjärtat är utbildat, med stor slagvolym (PP), pumpar effektivt blod.

    Hjärtcykel

    Hjärtcykel kort

    Hjärtat kontraherar rytmiskt och cykliskt. En cykel varar 0,8-0,85 sekunder, den är ca 72-75 nedskärningar (slag) per minut.

    Huvudfaser:

    Systole - sammandragning av muskelskiktet (myokardium) och frisättning av blod från hjärtkaviteterna. Först samlar öronen i hjärtat, sedan atrierna och sedan ventriklarna. Sammandragningen rör sig över hjärtat i en våg från öronen till ventriklarna. Kontrakten i hjärtmuskeln utlöses av exciteringen, och excitationen börjar från sinoatriella noden i övre delen av atrierna.

    Diastole - avslappning av hjärtmuskeln (myokardium). Samtidigt finns det en ökning av myokardieblodtillförseln och metaboliska processer i den. Under diastolen fylls hjärtan i hjärtat med blod: både atria och ventriklar samtidigt. Det är viktigt att notera att blodet fyller både atria och ventrikler samtidigt, sedan ventiler mellan atria och ventriklarna (atrioventrikulära) i diastolen är öppna.

    Komplett hjärtcykel

    Ur synpunkten av excitationens rörelse genom hjärtmuskeln bör cykeln börja med excitation och sammandragning av atriären, eftersom Det är på dem att spänningen från hjärtans huvudpacemaker går, den syndo-atriella noden.

    Rytmförare

    En hjärtfrekvensdrivare är en speciell del av hjärtmuskeln som självständigt alstrar elektrokemiska impulser som exciterar hjärtmuskeln och leder till sammandragning.

    Hos människor är den ledande pacemakern sinus-atrial (sino-atrial) noden. Detta är en region av hjärtvävnad som innehåller "pacemaker" -celler, d.v.s. celler med förmåga att spontan excitering. Den är belägen på höger atriums båge nära den plats där överlägsen vena cava faller in i den. Knappen består av ett litet antal hjärtmuskelfibrer som är inerverade av slutet av neuroner från det vegetativa nervsystemet. Det är viktigt att förstå att vegetativt innervation inte skapar en självständig rytm av hjärtimpuls, utan reglerar (ändrar) den takt som pacemakerhjärtcellerna själva sätter. I sino-atriella nod uppstår varje våg av hjärtans upphetsning, vilket leder till en sammandragning av hjärtmuskeln och tjänar som en stimulans för framkomsten av nästa våg.

    Fas av hjärtcykeln

    Så börjar våg av sammandragning av hjärtat utlöst av en våg av excitation börja med atrierna.

    1. Systole (sammandragning) av atrierna (tillsammans med öronen) - 0,1 s. Atriumkontraktet och tryck blodet redan i dem i ventriklerna. I ventriklerna finns det också blod, som infunderas i dem från venerna under diastolen, som passerar genom atria och öppna atrioventrikulära ventiler. På grund av dess sammandragning av atriumet tillsättes ytterligare delar av blod till ventriklerna.

    2. Diastol (avkoppling) av atrierna - är avslappningen av atrierna efter sammandragning, den varar i 0,7 sekunder. Således är atriens vilotid mycket längre än tiden för deras arbete, och det är viktigt att veta. Från kammar blod kan inte komma tillbaka in i förmaket genom särskilda atrioventrikulär ventiler mellan förmaken och kamrarna (så kallade tricuspid och höger två fällbara eller mitralisklaffen, vänster). Således är väggarna i atrierna i diastolen avslappnade, men blod strömmar inte från ventriklarna in i dem. Under denna period har hjärtat 2 tomma och 2 fyllda kamrar. Blodet börjar strömma in i atrierna från venerna. För det första fyller det långsamma blodet den avslappnade atrien. Sedan, efter sammandragning av ventriklerna och deras avkoppling öppnar man trycket med sitt tryck och går in i ventriklerna. Atrial diastol är inte över ännu.

    Och till sist, i sino-atriella noden, föds en ny våg av upphetsning och under sitt inflytande går atrierna till systole och trycker blodet som ackumuleras i dem i ventriklerna.

    3. Ventricular systole - 0.3 s. En våg av excitation kommer från atrierna, såväl som genom interventrikulär septum och når det ventrikulära myokardiet. Ventriklarna reduceras. Blod under tryck frigörs från ventriklarna till artärerna. Från vänster - in i aortan, för att springa längs den stora cirkulationen av blodcirkulationen, och från höger - in i lungstammen, för att springa längs den lilla cirkeln av blodcirkulationen. Maximal ansträngning och maximalt blodtryck ger vänster ventrikel. Den har det mest kraftfulla myokardiet i alla kamrar i hjärtat.

    4. Diastol i ventriklerna - 0,5 s. Observera att resten varar längre än arbetet (0,5 s mot 0,3). Ventriklerna slappna av, semilunarventilerna vid deras gräns i artärerna är stängda, de tillåter inte blod att återvända till ventriklerna. Atrioventrikulära (atrioventrikulära) ventiler är öppna vid denna tidpunkt. Börjar fylla med blod i ventriklerna, som kommer in från atrierna, men hittills utan att Atria minskar. Alla 4 kammare i hjärtat, d.v.s. ventriklerna och atrierna är avslappnade.

    5. Totalt diastol i hjärtat - 0,4 s. Väggarna i atria och ventriklarna är avslappnade. Ventriklar fylls med blod som strömmar in i dem genom atriären från de ihåliga venerna, 2/3 och atrierna - helt.

    6. Ny cykel. Nästa cykel börjar - atriell systole.

    Video: Pumpning av blod till hjärtat

    För att konsolidera denna information, kolla på det animerade hjärtcykeldiagrammet:

    Detaljer om arbetet i hjärtkärlens hjärtkärl

    1. Systole.

    2. Exile.

    3. Diastol

    Ventrikulär systole

    1. Systolperioden, d.v.s. reduktion, består av två faser:

    1) Asynkron reduktionsfas är 0,04 s. Ojämn kontraktion av ventrikulärväggen uppträder. Samtidigt sker sammandragningen av interventrikulär septum. På grund av detta ökar trycket i ventriklerna, och som ett resultat stänger den atrioventrikulära ventilen. Som ett resultat isoleras ventriklarna från atrierna.

    2) Isometrisk kontraktionsfas. Detta innebär att längden på musklerna inte förändras, även om deras spänning ökar. Volymen hos ventriklarna ändras inte heller. Alla ventiler är stängda, ventriklarnas väggar är kontrakterade och tenderar att komma i kontrakt. Till följd av detta stramar ventriklarnas väggar, men blodet rör sig inte. Men detta ökar blodtrycket inuti ventriklerna, det öppnar arteriens semilunarventiler och en utväg framträder för blodet.

    2. Periodutvisning av blod - 0,25 s.

    1) Fasen med snabb utvisning - 0,12 s.

    2) Fas med långsam utvisning - 0,13 s.

    Utsläpp av blod från hjärtat

    Blod under tryck pressas från vänster ventrikel till aorta. Trycket i aortan ökar dramatiskt, och det expanderar och tar en stor del blod. På grund av väggens elasticitet krymper aortan omedelbart igen och driver blod genom artärerna. Expansion och sammandragning av aortan alstrar en tvärvåg som förökar sig med viss hastighet genom kärlen. Detta är en våg av expansion och sammandragning av kärlväggen - en pulsvåg. Dess hastighet sammanfaller inte med blodrörelsens hastighet.

    Pulsen är en transversell våg av expansion och sammandragning av artärväggen, genererad av expansion och sammandragning av aortan när blod frigörs från hjärtans vänstra kammare.

    Diastol ventriklar

    Protodiastolisk period - 0,04 s. Från slutet av den ventrikulära systolen till stängningen av semilunarventilerna. Under denna period återgår en del av blodet till ventrikeln från artärerna under blodtrycket i blodcirkulationscirklarna.

    Isometrisk avslappningsfas - 0,25 s. Alla ventiler är stängda, muskelfibrerna är reducerade, de har ännu inte sträckts ut. Men deras spänning minskar. Trycket i atrierna blir högre än i ventriklarna, och detta blodtryck öppnar atrioventrikulära ventiler för att tillåta blod att passera från atrierna till ventriklarna.

    Fyllningsfas Det finns en vanlig diastol i hjärtat, i vilket blodet fylls i alla sina kamrar, först snabbt och sedan långsamt. Blodet transiterar genom atriärerna och fyller ventriklerna. Ventriklar är fyllda med blod för 2/3 volym. För tillfället är hjärtat funktionellt 2-kammare, för endast dess vänstra och högra halvor är separerade. Anatomiskt bevaras alla 4 kameror.

    Presistola. Ventriklarna fylls slutligen med blod som ett resultat av atriell systole. Ventriklarna är fortfarande avslappnade, medan atrierna redan reduceras.

    Hjärtcykel Systole och Atrial Diastole

    Hjärtcykel och dess analys

    Hjärtcykeln är systol och diastol i hjärtat, upprepas periodiskt i en strikt följd, d.v.s. tidsperiod, inklusive en sammandragning och en avspänning av atria och ventriklar.

    Vid hjärtets cykliska funktion utmärks två faser: systol (sammandragning) och diastol (avkoppling). Under systolen befrias hjärthålen från blod, och under diastolen fylls de med blod. Perioden som inkluderar en systole och en diastol av atria och ventriklarna och den allmänna pausen som följer dem kallas cykeln med hjärtaktivitet.

    Atriell systole hos djur varar 0,1-0,16 s och ventrikulär systol - 0,5-0,56 s. Total hjärtpause (samtidig atrial och ventrikulär diastol) varar 0,4 s. Under denna period vilar hjärtat. Hela hjärtcykeln varar för 0,8- 0.86 s.

    Atriell funktion är mindre komplex än ventrikulär funktion. Atriell systole ger blodflödet till ventriklerna och varar 0,1 s. Då passerar atrierna in i diastolfasen, som varar i 0,7 s. Under diastolen fylls atrierna med blod.

    Varaktigheten av de olika faserna i hjärtcykeln beror på hjärtfrekvensen. Med vanligare hjärtslag minskar varaktigheten för varje fas, särskilt diastol.

    Fas av hjärtcykeln

    Under hjärtcykeln förstår perioden som täcker en sammandragning - systol och en avslappning - atrial och ventrikulär diastol - en vanlig paus. Den totala varaktigheten av hjärtcykeln vid en hjärtfrekvens på 75 slag / min är 0,8 s.

    Hjärtkontraktion börjar med atriell systole, som varar 0,1 s. Trycket i atrierna stiger till 5-8 mm Hg. Art. Atriell systole ersätts av en ventrikulär systol med en varaktighet av 0,33 s. Ventrikulär systol är uppdelad i flera perioder och faser (figur 1).

    Fig. 1. Fas av hjärtcykeln

    Spänningsperioden varar 0,08 s och består av två faser:

    • Fasen av asynkron sammandragning av det ventrikulära myokardiet varar 0,05 s. Under denna fas spredes processen för excitation och processen för sammandragning efter det genom det ventrikulära myokardiet. Trycket i ventriklerna ligger fortfarande nära noll. Vid slutet av fasen täcker kontraktionen alla fibrerna i myokardiet, och trycket i ventriklarna börjar öka snabbt.
    • Fas av isometrisk kontraktion (0,03 s) - börjar med slamming av ventrikulär-ventrikulära ventiler. När detta inträffar, jag, eller systolisk, hjärtton. Förskjutningen av ventilerna och blodet i riktning mot atriären orsakar en ökning av trycket i atrierna. Trycket i ventriklerna ökar snabbt: upp till 70-80 mm Hg. Art. i vänster och upp till 15-20 mm Hg. Art. till höger.

    Sväng- och semilunarventiler är fortfarande stängda, blodvolymen i ventriklerna förblir konstanta. På grund av det faktum att vätskan är praktiskt okompressibel, förändras inte myokardfibrernas längd, bara deras stress ökar. Snabbt ökande blodtryck i ventriklerna. Vänster ventrikeln blir snabbt rund och med en kraft träffar bröstväggens inre yta. I det femte interkostala rummet, 1 cm till vänster om den midklavikulära linjen vid detta ögonblick, bestäms den apikala impulsen.

    Vid slutet av stressperioden blir det snabbt ökande trycket i vänster och höger kammare högre än trycket i aorta och lungartären. Blodet från ventriklarna rusar in i dessa kärl.

    Perioden för utvisning av blod från ventriklerna varar 0,25 s och består av en snabb fas (0,12 s) och en fas med långsam utvisning (0,13 s). Trycket i ventriklerna ökar samtidigt: i vänster till 120-130 mm Hg. Art. Och i höger till 25 mm Hg. Art. Vid slutet av den långsamma expulsionsfasen börjar ventrikulärmyokardiet att slappna av, dess diastol börjar (0.47 s). Trycket i ventriklerna sjunker, blod från aortan och lungartären rusar tillbaka in i kammaren i ventriklerna och "förseglar" semilunarventilerna, och en II eller diastolisk hjärtton uppstår.

    Tiden från början av ventrikulär avkoppling till slamningen av semilunarventilerna kallas protodiastolisk period (0,04 s). Efter slamning av semilunarventilerna sjunker trycket i ventriklerna. Vid denna tidpunkt är bladventilerna fortfarande stängda, volymen av blod kvar i ventriklerna och följaktligen längden på myokardfibrerna ändras inte, därför kallas denna period isometrisk avkopplingstid (0,08 s). Vid slutet av dess tryck i ventriklerna blir lägre än i atrierna öppnas atriala ventrikulära ventiler och blod från atrierna går in i ventriklerna. Perioden att fylla ventriklerna med blod börjar, som varar 0,25 s och är uppdelad i faser av snabb (0,08 s) och långsam (0,17 s) fyllning.

    Oscillationer av väggarna i ventriklerna på grund av det snabba flödet av blod till dem orsakar utseendet på den tredje hjärttonen. Vid slutet av den långsamma fyllningsfasen uppträder atriell systol. Atria injicerar en ytterligare mängd blod i ventriklerna (presistolisk period lika med 0,1 s), varefter en ny cykel av ventrikulär aktivitet börjar.

    Oscillering av hjärtans väggar, orsakad av atriens sammandragning och det ytterligare flödet av blod i ventriklerna, leder till utseendet på den fjärde hjärttonen.

    Med vanligt lyssnande i hjärtat hörs höga I och II-toner tydligt, och tysta III och IV-toner detekteras endast med grafisk inspelning av hjärttoner.

    Hos människor kan antalet hjärtslag per minut variera avsevärt och beror på olika yttre påverkan. Vid fysisk eller idrottsbelastning kan hjärtat minskas till 200 gånger per minut. Varaktigheten av en hjärtcykel kommer att vara 0,3 s. Ökningen i antalet hjärtslag kallas takykardi, medan hjärtcykeln är reducerad. Under sömnen minskar antalet hjärtslag till 60-40 slag per minut. I detta fall är varaktigheten för en cykel 1,5 s. Att minska antalet hjärtslag kallas bradykardi, och hjärtcykeln ökar.

    Hjärtcykelstruktur

    Hjärtcykler följer med en frekvens inställd av pacemakern. Varaktigheten av en enda hjärtcykel beror på frekvensen av sammandragningar av hjärtat och till exempel vid en frekvens av 75 slag / min är det 0,8 s. Den allmänna strukturen hos hjärtcykeln kan representeras som ett diagram (fig 2).

    Som framgår av fig. 1, när hjärtcykelens varaktighet är 0,8 s (frekvensen av sammandragningar är 75 slag / min), är atrierna i ett systoltillstånd av 0,1 s och i ett tillstånd av diastol 0,7 s.

    Systole är fasen av hjärtcykeln, inklusive sammandragning av myokardiet och utvisning av blod från hjärtat in i kärlsystemet.

    Diastol är fasen av hjärtcykeln, som innefattar avslappning av myokardiet och fyllningen av hjärtan i hjärtat med blod.

    Fig. 2. Diagram över den allmänna strukturen i hjärtcykeln. Mörka rutor visar atriella och ventrikulära systole, ljusa - deras diastol

    Ventriklarna är i systol tillstånd i ca 0,3 s och i diastoltillstånd i ca 0,5 s. Samtidigt i diastols tillstånd är atrierna och ventriklarna ungefär 0,4 s (totalt diastol i hjärtat). Systol och diastol i ventriklarna är uppdelade i perioder och faser av hjärtcykeln (tabell 1).

    Tabell 1. Perioder och faser av hjärtcykeln

    Ventrikulär systole 0,33 s

    Spänningsperiod - 0,08 s

    Asynkron reduktionsfas - 0,05 s

    Isometrisk kontraktionsfas - 0,03 s

    Utflyttningsperiod 0,25 s

    Snabb utvisningsfas - 0,12 s

    Långsam utvisningsfas - 0,13 s

    Diastol ventrikel 0.47 med

    Avkopplingsperiod - 0,12 s

    Protodiastoliskt intervall - 0,04 s

    Isometrisk avslappningsfas - 0,08 s

    Fyllningsperiod - 0,25 s

    Snabb påfyllningsfas - 0,08 s

    Långsam fyllningsfas - 0,17 s

    Faset för asynkron sammandragning är det initiala steget i systolen, i vilket exciteringsvågen förökar sig genom det ventrikulära myokardiet, men det finns ingen samtidig reduktion i kardiomyocyter och ventrikulära tryckintervall från 6-8 till 9-10 mm Hg. Art.

    Den isometriska kontraktionsfasen är ett systolsteg vid vilket atrioventrikulära ventiler stänger och trycket i ventriklarna stiger snabbt till 10-15 mm Hg. Art. i höger och upp till 70-80 mm Hg. Art. till vänster.

    Fasen med snabb utvisning är systolsstadiet, där det finns en ökning av trycket i ventriklerna till maximala värden på 20-25 mm Hg. Art. i höger och 120-130 mm Hg. Art. i vänster och blod (cirka 70% av systolisk utstötning) går in i kärlsystemet.

    Den långsamma expulsionsfasen är systolsstadiet där blodet (den återstående 30% systoliska överskottet) fortsätter att strömma in i kärlsystemet i en långsammare takt. Trycket sänks gradvis i vänster ventrikel från 120-130 till 80-90 mm Hg. Art., Till höger - från 20-25 till 15-20 mm Hg. Art.

    Protodiastolisk period - övergången från systol till diastol, där ventriklerna börjar slappna av. Trycket minskar i vänster ventrikel till 60-70 mm Hg. Art., I naturen - upp till 5-10 mm Hg. Art. På grund av det högre trycket i aortan och lungartären stängs semilunarventilerna.

    Perioden för isometrisk avkoppling är diastolsteget i vilket kaviteterna i ventriklerna isoleras genom stängda atrioventrikulära och semilunarventiler, de slappnar av isometriskt, trycket närmar sig 0 mm Hg. Art.

    Den snabba fyllningsfasen är diastolsteget, vid vilket atrioventrikulära ventiler öppnas och blodet rusar in i ventriklerna med hög hastighet.

    Den långsamma fyllningsfasen är diastolsteget, i vilket blod sakta går in i atria genom de ihåliga venerna och genom de öppna atrioventrikulära ventilerna in i ventriklarna. I slutet av denna fas är ventriklerna 75% fyllda med blod.

    Presystolisk period - scenen av diastol, som sammanfaller med atriell systole.

    Atriell systole - sammandragning av den atriella muskulaturen, där trycket i det högra atriumet stiger till 3-8 mm Hg. Art., I vänster - upp till 8-15 mm Hg. Art. och ca 25% av den diastoliska blodvolymen (15-20 ml vardera) går till var och en av ventriklarna.

    Tabell 2. Egenskaper för faser av hjärtcykeln

    Sammandragningen av myokardiet hos atriärerna och ventriklerna börjar efter deras excitation, och sedan pacemakern befinner sig i det högra atriumet, sträcker sig dess verkningspotential initialt till myokardiet till höger och sedan vänster atria. Följaktligen är myocardiet i det högra atriumet ansvarigt för exciteringen och sammandragningen något tidigare än myokardiet i vänstra atriumet. Under normala förhållanden börjar hjärtcykeln med atriell systol, som varar 0,1 s. Icke-samtidig täckning av exciteringen av myokardiet hos höger och vänster atria reflekteras av bildandet av P-vågen på EKG (fig 3).

    Även före atriell systole är AV-ventiler öppna och atriella och ventrikulära hålrum är redan i stor utsträckning fyllda med blod. Graden av sträckning av det atriella myokardiumets tunna väggar är viktigt för stimulering av mekanoreceptorer och produktion av atriell natriuretisk peptid.

    Fig. 3. Förändringar i hjärtans prestanda i olika perioder och faser av hjärtcykeln

    Under atriell systole kan trycket i vänster atrium nå 10-12 mm Hg. Art., Och i högst upp till 4-8 mm Hg. Art., Atria fyller dessutom ventriklerna med en blodvolym som är ca 5-15% av volymen i vila i ventriklarna i vila. Volymen av blod som tränger in i ventriklerna i atriell systol, under träning kan öka och vara 25-40%. Volymen av ytterligare fyllning kan öka upp till 40% eller mer hos personer över 50 år.

    Blodflödet under tryck från atrierna bidrar till sträckningen av det ventrikulära myokardiet och skapar förutsättningar för deras effektivare efterföljande reduktion. Därför spelar atrierna rollen som en typ av förankringskoncentrationsförmåga hos ventriklarna. Om denna atriella funktion försämras (till exempel vid förmaksflimmer) minskar effektiviteten hos ventriklarna, en minskning av deras funktionella reserver utvecklas och övergången till insufficiensen av myokardialkontraktilfunktionen accelererar.

    Vid tidpunkten för atriell systole registreras en a-våg på den venösa pulsens kurva, för vissa personer kan den 4: e hjärttonen registreras vid inspelning av ett fonokardiogram.

    Den blodvolym som är efter atriell systol i ventrikelhålan (i slutet av diastolen) kallas end diastolisk. Den består av den återstående blodvolymen i kammaren efter den tidigare systolen (naturligtvis den systoliska volymen), den blodvolym som fyllde ventrikulärhålan under diastol till atriell systole och ytterligare blodvolym som gick in i ventrikeln i atriell systole. Värdet av den slutdiastoliska blodvolymen beror på hjärtets storlek, volymen av blod som läckt ut från venerna och ett antal andra faktorer. Hos en frisk ung person i vila kan det vara ca 130-150 ml (beroende på ålder, kön och kroppsvikt kan variera från 90 till 150 ml). Denna blodvolym ökar något trycket i kammaren i ventriklerna, vilket under atriell systole blir lika med trycket i dem och kan fluktuera i vänstra kammaren inom 10-12 mm Hg. Art., Och i höger - 4-8 mm Hg. Art.

    Över en tidsperiod av 0,12-0,2 s, som motsvarar PQ-intervallet på EKG, sträcker sig åtgärdspotentialen från SA-noden till den apikala regionen hos ventriklerna, i myokardiet, av vilket exciteringsprocessen börjar sprida sig snabbt från toppunktet till hjärtat av basen och från endokardialytan till epikardiala. Efter excitationen börjar en sammandragning av myokardiet eller ventrikelsystolen, vars längd också beror på frekvensen av sammandragningar i hjärtat. Vid vila är det ca 0,3 s. Ventrikulär systole består av spänningsperioder (0,08 s) och expulsion (0,25 s) blod.

    Systole och diastol i båda ventriklerna utförs nästan samtidigt, men förekommer i olika hemodynamiska förhållanden. En ytterligare, mer detaljerad beskrivning av händelser som inträffar under systolen kommer att övervägas på exemplet på vänster ventrikel. Som jämförelse ges vissa data för höger kammare.

    Spänningsperioden hos ventriklerna är indelad i faser av asynkron (0,05 s) och isometrisk (0,03 s) sammandragning. Den kortfristiga fasen av asynkron sammandragning vid ingreppet av ventrikulär systol är en följd av icke-samtidighet av excitations täckning och sammandragning av olika delar av myokardiet. Excitation (motsvarande Q-våg på EKG) och myokardiell kontraktion uppträder initialt i området för papillärmusklerna, den apikala delen av interventrikulär septum och toppunkten i ventriklarna och under cirka 0,03 s sträcker den sig till det återstående myokardiet. Detta sammanfaller med registreringen på EKG hos Q-vågan och den stigande delen av R-vågan till dess spets (se fig 3).

    Hjärtans främre del ligger före basen, så den apikala delen av ventriklerna drar upp mot basen och trycker blodet i samma riktning. Områdena i hjärtkärlets myokardium, som inte är exciterade genom excitation, kan något sträckas vid denna tid, så hjärtens volym förblir nästan oförändrad, blodtrycket i ventriklerna förändras inte signifikant och förblir lägre än blodtrycket i stora kärl ovanför tricuspidventilerna. Blodtrycket i aorta och andra arteriella kärl fortsätter att falla, närmar sig värdet av det minsta diastoliska trycket. Tricuspid vaskulära ventiler förblir dock stängda för nu.

    Atrierna slappna av vid denna tidpunkt och blodtrycket i dem minskar: för vänstra atriumet, i genomsnitt från 10 mm Hg. Art. (presystolisk) upp till 4 mm Hg. Art. Vid slutet av den asynkrona sammandragningsfasen hos vänster ventrikel stiger blodtrycket i det upp till 9-10 mm Hg. Art. Blodet, som är under tryck från den kontraktila apikala delen av myokardiet, lyfter upp AV-ventilernas klaffar, de nära varandra och tar en position nära horisonten. I detta läge hålls ventilerna av senastrådar i papillärmusklerna. Förkortning av hjärtstorleken från dess apex till basen, som på grund av invarianingen av sänksfilamentens storlek kan leda till inversion av ventilerna i atriaen kompenseras av en sammandragning av hjärtens papillära muskler.

    Vid tillslutningen av atrioventrikulära ventiler hörs den 1: a systoliska hjärttonen, den asynkrona fasen slutar och den isometriska sammandragningsfasen börjar, vilken också kallas isovolumetrisk (isovolumisk) sammandragningsfas. Varaktigheten av denna fas är ca 0,03 s, dess genomförande sammanfaller med det tidsintervall där den nedre delen av R-våg och början av S-våg på EKG registreras (se fig 3).

    Från det ögonblick som AV-ventilerna är stängda, blir kaviteten hos båda ventriklerna under normala förhållanden lufttäta. Blod, som vilken som helst annan vätska, är inkompressibel, så sammandragningen av myokardfibrerna sker vid sin konstanta längd eller i isometrisk form. Volymen av de ventrikulära kaviteterna förblir konstanta och sammandragningen av myokardiet sker i isovolum-läget. Ökningen i spänning och styrka av myokardiell kontraktion under sådana förhållanden transformeras till snabbt ökande blodtryck i kaviteterna i ventriklerna. Under inverkan av blodtryck på AV-septumområdet sker en kort växling mot atrierna, överförs till det inflöerande venösa blodet och reflekteras av utseendet av en c-våg på kurvan hos venös puls. Inom kort tid - cirka 0,04 s, når blodtrycket i vänster ventrikulärt hålrum ett värde som är jämförbart med dess värde vid denna punkt i aortan, vilket har minskat till en minimumsnivå av 70-80 mm Hg. Art. Blodtrycket i högerkammaren når 15-20 mm Hg. Art.

    Överskottet av blodtryck i vänster ventrikel över värdet av det diastoliska blodtrycket i aortan åtföljs av öppningen av aortaklaffarna och förändringen i perioden med hjärt-spänning med tiden för utvisning av blod. Anledningen till öppningen av semilunarventilerna i blodkärl är blodtrycksgradienten och den fackliknande egenskapen hos deras struktur. Ventilerna på ventilerna pressas mot blodkärlens väggar genom blodflödet som utstötes i ventriklerna.

    Perioden för exilblod varar omkring 0,25 s och är uppdelad i faser med snabb utvisning (0,12 s) och långsam utvisning av blod (0,13 s). Under denna period förblir AV-ventilerna stängda, semilunarventilerna är öppna. Den snabba utvisningen av blod i början av perioden beror på flera orsaker. Från början av excitering av kardiomyocyter tog det ca 0,1 s och aktionspotentialen ligger i platåfasen. Kalcium fortsätter att strömma in i cellen genom de öppna långa kalciumkanalerna. Således fortsätter högspänningen hos fibrerna i myokardiet, som redan var i början av utvisningen, att öka. Myokardiet fortsätter att komprimera den minskande volymen av blod med större kraft vilket åtföljs av en ytterligare ökning av trycket i ventrikulärhålan. Graden av blodtryck mellan kammaren i ventrikeln och aortan ökar och blodet börjar utvisas i aortan med stor hastighet. I fasen med snabb utvisning frisätts mer än hälften av blodvolymen av blod som utstötas från ventrikeln över hela utstötningsperioden (ca 70 ml) i aortan. Vid slutet av fasen med snabb blodutvisning når trycket i vänster ventrikel och i aortan sitt maximala - ca 120 mm Hg. Art. hos unga i vila och i lungstammen och höger kammare - ca 30 mm Hg. Art. Detta tryck kallas systoliskt. Fasen med snabb blodutvisning sker under den tid då slutet av S-våg och den isoelektriska delen av ST-intervallet registreras på EKG före T-vågens början (se fig 3).

    Med snabb utvisning av jämn 50% av slagvolymen blir blodflödet till aortan på kort tid cirka 300 ml / s (35 ml / 0,12 s). Medelvärdet av utflöde av blod från kärlsystemets artärdel är ca 90 ml / s (70 ml / 0,8 s). Således går mer än 35 ml blod i aortan i 0,12 s, och under denna tid strömmar omkring 11 ml blod från det till artärerna. Det är uppenbart att för att i kort tid kunna rymma en större volym blodflöde i jämförelse med den flytande en, är det nödvändigt att öka kapaciteten hos de kärl som får denna "överskott" blodvolym. En del av den kinetiska energin hos det kontraherande myokardiet kommer att användas inte bara vid utstötning av blod utan även på sträckning av de elastiska fibrerna i aortaväggen och stora artärer för att öka deras kapacitet.

    I början av fasen med snabb utvisning av blod är dilatationen av blodkärlens väggar relativt lätt, men eftersom mer blod utvisas och allt fler blod sträcker sig ökar motståndet mot spänning. Gränsen för sträckning av elastiska fibrer är uttömd och styva kollagenfibrer av kärlväggar börjar utsättas för sträckning. Motståndet hos de perifera kärlen och själva blodet stör blodflödet. Myokard måste spendera en stor mängd energi för att övervinna dessa resistanser. Den potentiella energin i muskelvävnaden och elastiska strukturer i myokardiet som ackumuleras under den isometriska spänningsfasen är uttömd och styrkan i dess sammandragning minskar.

    Hastigheten för utstötningen av blod börjar minska och fasen av snabb utvisning ersätts av en fas med långsam utvisning av blod, vilket också kallas fasen med minskad utvisning. Dess varaktighet är ca 0,13 s. Minskningsgraden i ventrikulär volym minskar. Blodtrycket i ventrikel och i aorta i början av denna fas minskar nästan i samma takt. Vid denna tidpunkt inträffar stängning av långsamma kalciumkanaler, och platåfasen av åtgärdspotentialen slutar. Inträdet av kalcium i kardiomyocyter reduceras och myocytmembranet går in i fas 3 - den slutliga repolarisationen. Systole slutar, perioden för utvisning av blod och diastol i ventriklerna börjar (motsvarar i tid till fas 4 av åtgärdspotentialen). Genomförandet av den reducerade utvisningen sker vid en tidpunkt då T-vågen registreras på EKG, och fullbordandet av systolen och början av diastolen uppträder vid tiden för slutet av T-vågan.

    I systol av hjärtkärlens kammar utstötas mer än hälften av den slutdiastoliska blodvolymen (ca 70 ml) från dem. Denna volym kallas blodets slagvolym. Blocks chockvolymen kan öka med ökad myokardiell kontraktilitet och omvänt minska med otillräcklig kontraktilitet (se ytterligare indikatorer på hjärtets pumpfunktion och myokardial kontraktilitet).

    Blodtrycket i ventriklerna i början av diastolen blir lägre än blodtrycket i artärkärlen som avviker från hjärtat. Blodet i dessa kärl genomgår verkan av krafterna i de sträckta elastiska fibrerna i kärlväggarna. Blodkärlens lumen återställs och viss blodvolym förskjuts från dem. En del av blodet flyter till periferin. En annan del av blodet förskjuts i riktning mot hjärtkammarens hjärtkroppar och när det rör sig bakåt fyller det fickorna i tricuspid vaskulära ventiler, vars kanter är stängda och hållna i detta tillstånd genom blodets resulterande differentialtryck.

    Tidsintervallet (ca 0,04 s) från början av diastolen till kollaps av kärlventilerna kallas protodiastoliskt intervall. Vid slutet av detta intervall registreras och övervakas den 2: a diastoliska hjärtstoppet. Med synkron inspelning av EKG och fonokardiogram registreras början på den andra tonen i slutet av T-våget på EKG.

    Diastolen i det ventrikulära myokardiet (ca 0,47 s) är också uppdelat i perioder av avslappning och fyllning, vilka i sin tur delas in i faser. Eftersom stängningen av ventrikulära hålrums semilunar vaskulära ventiler är vid 0,08 med sluten, eftersom AV-ventilerna vid denna tid fortfarande är stängda. Myocardiums avkoppling, huvudsakligen beroende på egenskaperna hos de elastiska strukturerna i dess intra- och extracellulära matris, utförs under isometriska betingelser. I kaviteterna i hjärtkärlens hjärtan förblir mindre än 50% av blodet i den slutdiastoliska volymen efter systol. Volymen av ventrikulära håligheter under denna tid ändras inte, blodtrycket i ventriklerna börjar minska snabbt och tenderar att vara 0 mm Hg. Art. Minns att vid denna tid fortsatte blodet att återvända till atrierna i ca 0,3 s och att trycket i atrierna gradvis ökade. Vid den tidpunkt då blodtrycket i atrierna överstiger trycket i ventriklerna öppnar AV-ventilerna, den isometriska relaxeringsfasen slutar och perioden för fyllning av ventriklarna med blod börjar.

    Fyllningsperioden varar ca 0,25 s och är uppdelad i faser av snabb och långsam fyllning. Strax efter öppnandet av AV-ventilerna strömmar blodet längs tryckgradienten snabbt från atrierna in i ventrikulärhålan. Detta underlättas av viss sugverkan av avslappnande ventriklar, som är förknippade med deras expansion genom inverkan av elastiska krafter som uppstått under kompression av myokardiet och dess bindvävskonstruktion. I början av den snabba påfyllningsfasen kan ljudvibrationer i form av det tredje diastoliska hjärtljudet spelas in på fonokardiogrammet, orsakat av öppningen av AV-ventiler och den snabba övergången av blod till ventriklerna.

    När ventriklarna fyller minskar trycksfallet mellan atrierna och ventriklerna och efter ca 0,08 s ger den snabba fyllningsfasen väg till den långsamma fyllningsfasen hos ventriklarna med blod, som varar ca 0,17 s. Fyllningen av ventriklerna med blod under denna fas utförs huvudsakligen på grund av bevarande av den återstående kinetiska energin i blodet som rör sig genom kärlen som ges av den tidigare sammandragningen av hjärtat.

    0,1 s före slutet av fasen med långsam fyllning med blod i ventriklerna, hjärtcykeln är fullbordad, en ny åtgärdspotential uppstår i pacemakern, nästa atriella systol utförs och ventriklarna fylls med slutdiastoliska blodvolymer. Denna tidsperiod av 0,1 s, den slutliga hjärtcykeln, kallas ibland även perioden för ytterligare fyllning av ventriklerna under atriell systol.

    Den integrerade indikatorn som karakteriserar hjärtens mekaniska pumpfunktion är volymen av blod pumpat av hjärtat per minut eller minutvolymen av blod (IOC):

    IOC = HR • PF,

    där HR är hjärtfrekvensen per minut; PP-slagvolymen av hjärtat. Normalt i vila är IOC för en ung man cirka 5 liter. Reglering av IOC utförs av olika mekanismer genom förändring av hjärtfrekvens och (eller) PP.

    Effekten på hjärtfrekvensen kan utövas genom en förändring i pacemakercellernas egenskaper. Effekten på PP uppnås genom effekten på kontraktiliteten hos myokardiella kardiomyocyter och synkroniseringen av dess sammandragning.